

Exploring the QCD Phase Diagram: RHIC Beam Energy Scan II

Daniel Cebra
University of California, Davis

For the STAR Collaboration

The RHIC Beam Energy Scan I

- We built RHIC to find the QGP.And we did it!
- But QGP is a new and complicated phase of matter. We have made huge progress in understanding its nature. At high energy, we expect a **cross-over** transition. At lower energy there should be a **first order** transition and a **critical point**.
- The structure of the QCD matter phase diagram is fundamental. This will be in textbooks in future decades
- Three Goals of BES program:
 - Turn-off of QGP signatures
 - Find critical point
 - First order phase transition.

The QCD Matter Phase Diagram

We can not measure compression, volume, or density, so we instead use chemical potential, $\boldsymbol{\mu}$

Reaction Trajectories

Overview of the Beam Energy Scan I Results

1. Turn-off of QGP signatures:

- NCQ breaks down below 19.6 GeV
- High p_t suppression not seen below 19.6 GeV
- LPV effect not seen below 11.5 GeV

- v_1 sign change above 7.7
- Inflection in v_2 and $dE_T/d\eta$ at 7.7
- Azimuthal HBT signal inconclusive

3. Search for the critical point.

- K/π , K/p, or p/π fluctuations are not conclusive.
- Higher moments of the proton distributions

Hints

Turn-off of QGP Signatures

Search for 1st Order PhaseTransition

Search for the Critical Point

Volumes cancel

$$\chi_{B}^{(n)} = \frac{\partial^{n} (P/T^{4})}{\partial (\mu_{B}/T)^{n}}\Big|_{T} \longrightarrow \chi_{B}^{4}/\chi_{B}^{2} = (\kappa\sigma^{2})_{B}$$

$$\chi_{B}^{3}/\chi_{B}^{2} = (S\sigma)_{B}$$

Deviations from Poisson in the lower half of the BES energy range

Need more statistics or finer energy steps

 $\overline{\Lambda}R$

- 1) The key QGP signatures disappear below 19.6
- First order phase transition or Onset of deconfinement *likely* at the lower end of the range
 - low energy performance is critical
- 3) Critical Point will need more statistics
 - Do we need finer steps? Over 100 MeV Gap in μ_B between 11.5 and 19.6
- 4) Determination of the temperature dependence of transport properties

	√S _{NN} (GeV)	19.6	14.6	11.5	7.7
	μ_{B} (GeV)	205	250	315	420
	BES I (MEvts)	36		11.7	4.3
	BES II (MEvts)	400	100	120	80
• Fi	iner steps in μ_{B}	Critical		Ons	set of

But that's a lot of data... at current rates, this would take ~70 weeks of RHIC operations! Isn't there a better way? → Yes! We can cool the beams!

Critical Point

• High Statistics

Deconfinement

Outlook - BES-II

√S _{NN} (GeV)	62.4	39	27	19.6	14.6	11.5	7.7	4.5	3.9	3.5	3.0
$\mu_{\scriptscriptstyle B}$ (MeV)*	70	115	155	205	250	315	420	585	630	670	720
BES I (MEvts)	67	130	70	36		11.7	4.3			_	
Rate(MEvts/day)	20	20	9	3.6	1.6	1.1	0.5			Targe isions	t
BES II (MEvts)				400	100	120	80	5	5	5	5
eCooling				8	6	4.5	3				
Beam (weeks)				2	1.5	3.5	7.5				

* J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, PR C73, 034905 (2006).

SRF Gun

- •We have now put forward a BES-II proposal to focus on the most interesting region
- •Electron cooling is key to the feasibility of this proposal
- eCooling will take a few years
- •Expect BES-II in 2017-2019

BES-II

100

Report to the property of the pro

Daniel Cebra 08/13/2013

Low Energy RHIC electron Cooling Re Brookhaven National Laboratory

TimeLine Drivers

		•	IIIICEIIIC DIIVCIS	
	Years	Beam Species and Energie	Science Goals	New Systems Commissioned
	2013	• 500 GeV $\vec{p} + \vec{p}$ • 15 GeV Au+Au	 Sea antiquark and gluon polarization QCD critical point search 	Electron lensesupgraded pol'd sourceSTAR HFT
rur -> Sti	n in 2014, v lower stati	• 200 GeV Au+Au and haseling data via 200 Il be a 3 week without cooling, stics (30-40M) come back to ter	 Heavy flavor flow, energy loss, thermalization, etc. quarkonium studies 	 56 MHz SRF full HFT STAR Muon Telescope Detector PHENIX Muon Piston Calorimeter Extension (MPC-EX)
	2015- 2017	 High stat. Au+Au at 200 and ~40 GeV U+U/Cu+Au at 1-2 energies 200 GeV p+A 500 GeV p † p 	 Extract η/s(T_{min}) + constrain initial quantum fluctuations further heavy flavor studies sphaleron tests @ μ_B≠0 gluon densities & saturation finish p+p W prod'n 	Coherent Electron Cooling (CeC) test Low-energy electron cooling STAR inner TPC pad row upgrade
	2018- 2021	 5-20 GeV Au+Au (E scan phase 2) long 200 GeV + 1-2 lower √s Au+Au w/ upgraded dets. baseline data @ 200 GeV and lower √s 	 x10 sens. increase to QCD critical point and deconfinement onset jet, di-jet, γ-jet quenching probes of Eloss mechanism color screening for different qq states transverse spin asyms. Drell-Yan & gluon saturation 	 sPHENIX forward physics upgrades The BES II program needs electron cooling and it Needs the iTPC upgrade
			0.00.0000000000000000000000000000000000	

500 GeV p + p
 200 GeV p + A

Slide 12 of 18

BES Phase II – Relationship to TPC Upgrade

The TPC inner sector upgrade is critical for three reasons:

- 1) It reduces the low p_t cut-in threshold
- 2) It extends the accessible rapidity range

Important for fluctuation studies

Important for directed flow

3) Improves dE/dx resolution

The TPC inner sector upgrade is especially important for the fixed target program:

4) For fixed target events, mid-rapidity will between 1.0 and 1.5, depending on collision energy. The iTPC will extend the TPC coverage forward of mid-rapidity.

High Energy Range Drivers

 Above what energy does the system seem to behave like a QGP?

Where do we see evidence for the critical point?

 Where do we no longer see evidence of a softening of the EOS?

LOW EHEIRY NAIC EIECTION COOMING VENIE

Brookhaven National Laboratory

- → Consistently we see QGP signatures at 19.6 and above. But even at this energy, the trajectory might pass through a critical point.
- → The fluctuations at 19.6 seem to exhibit the largest deviation, however the fluctuations at 27 GeV also seem to deviate from baselines.
- → The proton directed flow would suggest that reaction trajectories cross the coexistence region for beam energies from 7.7 to 27.
- → Ideal reach would be to 27 GeV

Statistics Drivers

Flow of the phi meson:

The ϕ is a meson with the mass of a baryon and with only created quarks (s – s_{bar}).

This is key for understanding dependence of flow on the quark content.

Higher Moments/ Fluctuations:

The higher moments of conserved quantities are sensitive to critical behavior, however finite size effects wash out the signal. Significantly better resolution is needed.

The most critical are the high p_t data points. We need to be able to make this measurement out to 3 GeV/c. This plot shows the error projections for 80, 120, 400 Mevts.

The errors on the net-proton kurtosis get larger where the signal starts to show deviations. We need the errors in the 7.7 to 19.6 range to be comparable to the higher energies.

Low Energy Range Drivers

- NA49 suggests the onset of deconfinement at 7.7 GeV.
- STAR/AGS data suggest an inflection in the magnitude of the elliptic flow around 7.7 GeV.
- STAR data show the directed flow going negative above 7.7 GeV
- PHENIX/AGS data suggest an inflection in the generation of transverse energy around 7.7 GeV
- We will need to take data below 7.7 GeV to verify that this is real change in behavior and not an artifact.
- STAR can achieve lower energies by using a fixed-target (range from 2.5 to 4.5 GeV), but we need to calibrate/verify by running the same energy in collider mode. (Two overlap options: 7.7 GeV or 5 GeV)

Collider Mode	Fixed-Target Mode
62.4 GeV	7.7 GeV
19.6 GeV	4.5 GeV

Step Size Drivers

- We have been criticized by theorists for having too large a step size in μ_B .
- The argument is that we could miss the critical point. And that we should not have a step size larger than 50 MeV.
- There is a balance between step size and statisitcs.
- There are clearly still some gaps to be filled.

The ability to survey energies will be important														
√S _{NN} (GeV)	62.4	39	27	19.6	14.6	11.5	9.1	7.7	6.4	5.0	4.5	3.9	3.5	3.0
$\mu_{\scriptscriptstyle B}$ (MeV)*	70	115	155	205	250	315	370	420	480	555	585	630	670	720
BES I (MEvts)	67	130	70	36		11. 7		4.3						
Rate(MEvts/da y)	20	20	9	3.6	1.6	1.1		0.5					Target sions	
BES II (MEvts)				400	100	120		80			5	5	5	5
eCooling				8	6	4.5		3						
Beam (weeks)				2	1.5	3.5		7.5						

A few possible energies

Ideal BES phase II

- High luminosity
- Fine energy step size
- Low energy range down to 5.0 GeV
- High energy range up to 27 GeV

However, realistically we can not have everything. Therefore we must prioritize.

Conclusions - BES Phase II

Although several questions have been answered by data from BES-I, there are still some important open questions that we need more data to answer conclusively.

- •Therefore we have proposed BES-II with 10-20 times better statistics.
- •This will need electron cooling, which is being developed by CAD.
- •The iTPC upgrades will provide extended η coverage and lower p_T cut-ins.
- •The Fixed target program will extend BES-II physics reach to the region below the onset of deconfinement.
- All these developments will be ready for a second low energy run at RHIC in the time frame from 2017-2020.

Backup

Low Energy Electron Cooling at RHIC

Electron Cooling can raise the luminosity by a factor of 3-10 in the range from 3 – 10 GeV

Long Bunches increase luminosity by factor of 2-5

Implimentation in phases:

Phase I (2017)
$$\sqrt{s_{NN}} = 5-9 \text{ GeV}$$

Phase II (2018+) [additional 3 MeV booster cavity] $Vs_{NN} = 9-20 \, \text{GeV}$

SRF Gun

otal luminosity 1/(cm^2 sec)

gun

energy correction

cavity

Slide 23 of 21

Simulation of luminosity with electron cooling at beam energy of 3.85 GeV/n ($V s_{NN} = 7.7$ GeV).

BES Phase II+ Fixed Target

BES: v₂ of identified *anti*particles vs energy

Baryon vs. meson splitting for *anti*particles disappears at energies ≤11.5 GeV

Baryon-meson splitting reduces with decrease of energy and at 7.7 is gone, indicating decreasing partonic effects at lower energies For $K_{pt>2~GeV/c}^0$: $R_{CP}<1$ for $\sqrt{s_{NN}}>19$ GeV and >1 for $\sqrt{s_{NN}}<11.5$ GeV

Is there another way?

Can another facility do this faster?

Or better?

Super Proton Synchrotron (SPS)

+ Running now, that's good

Not Ideal

- + Energy range is good
- But fixed-target
- And light ions

Pb+Pb

energy (A GeV/

- •Time Line: 2009-2015
- •Energy Range: √s_{NN} = **4.9 to 17.3** GeV

 μ_{B} = 0.560 to 0.230 GeV

energy (A GeV)

T – test of secondary ion beams

2012/14

Nuclotron based Ion Collider fAcility (NICA)

Z SŢĀR

•Time Line: Not yet funded. Plan is to submit documents by end of 2012. Operations could not begin before 2017 (probably much later)

•Energy Range: Vs_{NN} from 3.9 - 11 GeV for Au+Au; μ_B from 0.630 - 0.325 GeV.

Facility for Antiproton and Ion Research (FAIR)

Comparison of Facilities

Facil	ty
-------	----

Exp.:

Start:

Au+Au Energy:

√s_{NN} (GeV)

Event Rate:

At 8 GeV

Physics:

RHIC BESII

STAR PHENIX

2017

7.7-19.6+

100 HZ

CP&OD

SPS

NA61

2009

4.9-17.3

100 HZ

CP&OD

NICA

MPD

>2017?

2.7 - 11

<10 kHz

OD&DHM

SIS-300

CBM

>2022?

2.7-8.2

<10 MHZ

OD&DHM

CP = Critical Point
OD = Onset of Deconfinement
DHM = Dense Hadronic Matter

Fixed Target

Lighter ion collisions

Conclusion:

RHIC is the best option

Fixed Target

